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We consider the stochastic gradient descent (SGD) for solving the following problem:

min
w∈Rd

F (w),

where F : Rd → R is a differentiable function. Let us denote by Gt(w) a stochastic gradient at
t-th iterate, which satisfies the following:

Assumption 1 (Stochastic gradient). Gt(w) is an unbiased estimator of the gradient ∇F (w),
that is, E[Gt(w)] = ∇F (w). Moreover, {Gt(w)}t=1,2,... are independent copies each other.

Then, SGD is defined as follows: for an initial point w1 ∈ Rd,

wt+1 ← wt − ηtGt(wt), (1)

where ηt > 0 (t = 1, 2, . . .) are step sizes.

Example 1 (Risk Minimization). Let ℓ(w, z) be a loss function consisting of the hypothesis
function parameterized by w ∈ Rd and the data z ∈ Rp. Let µ be an empirical/true data
distribution over the data space and Z be a random variable following µ. Then, the objective
function is defined by

F (w) = EZ∼µ[ℓ(w,Z)].

Given i.i.d. random variables {Zt}∞t=0 with the same distribution as Z, the standard stochastic
gradient at t-th iterate is defined as Gt(w) = ∇wℓ(w,Zt). That is, SGD is described as follows:

wt+1 ← wt − ηt∇wℓ(wt, Zt).

Note that we can further include the ℓ2-regularization in the objective f .

In this note, we make the following standard assumptions on F :

Assumption 2 (Lipschitz smoothness). There is a constant L > 0 such that for any w,w′ ∈ Rd,

F (w′) ≤ F (w) +∇F (w)⊤(w′ − w) +
L

2
∥w′ − w∥22.

Assumption 3 (Polyak- Lojasiewicz (PL) Inequality). Let F∗ = infw∈Rd F (w). There is a
constant µ > 0 such that for any w ∈ Rd,

∥∇F (w)∥22 ≥ 2µ(F (w)− F∗).
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To guarantee the convergence of SGD, we need a condition on the second moment or variance
of the stochastic gradient:

E[∥Gt(w)∥22] = ∥∇F (w)∥22 + E[∥Gt(w)−∇F (w)∥22].

So far, several conditions were proposed as summarized below:

• Bounded gradient (BG):
E[∥Gt(w)∥22] ≤ σ2.

• Bounded variance (BV), (Ghadimi and Lan, 2013):

E[∥Gt(w)∥22] ≤ ∥∇F (w)∥22 + σ2.

• Strong growth condition (SGC), (Vaswani et al., 2019):

E[∥Gt(w)∥22] ≤ α∥∇F (w)∥22.

• Weak growth condition (WGC), (Vaswani et al., 2019):

E[∥Gt(w)∥22] ≤ 2α(F (w)− F∗).

• Relaxed growth condition (RGC), (Bottou et al., 2018):

E[∥Gt(w)∥22] ≤ α∥∇F (w)∥22 + β.

• Expected smoothness (ES), (Gower et al., 2021b, 2019):

E[∥Gt(w)−Gt(w∗)∥22] ≤ 2α(F (w)− F∗),

where w∗ = arg minw∈Rd F (w).

There are obvious relations among the above conditions. For instance,

• (BG) implies (BV).

• (BV)/(SGC) implies (RGC).

• (SGC) with Lipschitz smoothness implies (WGC).

• (WGC) with PL-inequality implies (SGC).

• (WGC) implies (ES) since Gt(w∗) = 0 under (WGC).

Moreover, (WGC) and (SGC) imply the interpolation condition, that is, Gt(w∗) = 0 (a.e.).
In particular, all stochastic gradients Gt(w∗) = 0 for finite-sum problems. This means the
vanishing of gradient and stochastic noise at the solution w∗.

Recently, Khaled and Richtárik (2020) proposed the following general condition.

Assumption 4 (ABC condition1). There exist constants A,B, and C ≥ 0 such that for any
w ∈ Rd,

E[∥Gt(w)∥22] ≤ 2A(F (w)− F∗) + B∥∇F (w)∥22 + C.

1This condition is named the expected smoothness in Khaled and Richtárik (2020), but we refer it to as ABC
condition according to Gower et al. (2021a) to avoid confusion.
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We can easily see that all conditions (BG), (BV), (SGC), (WGC), (RGC), and (ES) imply
ABC condition. The following proposition provides an example of this condition.

Proposition 1 (Minibatch stochastic gradient). Let us consider the risk minimization in Exam-
ple 1. We suppose each loss ℓ(w, z) is β-Lipschitz smooth in w. Let b ∈ Z be the minibatch size.

For independent copies Z
(1)
t , . . . , Z

(b)
t of Zt, we define the minibatch variant of the stochastic

gradients as follows:

Gt(w) =
1

b

b∑
j=1

∇wℓ(w,Z
(j)
t ).

Then, Assumption 4 is satisfied with A = β
b , B = b−1

b , and C = 2β
b (F∗ − l∗), where ℓ∗ =

infw,z ℓ(w, z).

Proof. Since ℓ(w,Z
(j)
t ) is β-Lipschitz smooth in w, it follows that for any w,w′ ∈ Rd,

ℓ(w′, Z
(j)
t ) ≤ ℓ(w,Z

(j)
t ) +∇wℓ(w,Z

(j)
t )⊤(w′ − w) +

β

2
∥w′ − w∥22.

By minimizing both sides with respect to w′, we get

ℓ∗ ≤ ℓ(w,Z
(j)
t )− 1

2β
∥∇wℓ(w,Z

(j)
t )∥22.

By taking the expectation, we get

E[∥∇wℓ(w,Z
(j)
t )∥22] ≤ 2β(F (w)− l∗). (2)

Next, we evaluate E[∥Gt(w)∥22] as follows:

E[∥Gt(w)∥22] = E

 1

b2

∥∥∥∥∥∥
b∑

j=1

∇wℓ(w,Z
(j)
t )

∥∥∥∥∥∥
2

2


= E

 1

b2

b∑
j=1

∥∥∥∇wℓ(w,Z
(j)
t )

∥∥∥2
2

+
1

b2

∑
i ̸=j

∇wℓ(w,Z
(i)
t )⊤∇wℓ(w,Z

(j)
t )


=

1

b
E
[
∥∇wℓ(w,Zt)∥22

]
+

b− 1

b
∥E [∇wℓ(w,Zt)]∥22 . (3)

Combining (2) and (3), we get

E[∥Gt(w)∥22] ≤ 2β

b
(F (w)− l∗) +

b− 1

b
∥∇F (w)∥22

=
2β

b
(F (w)− F∗) +

b− 1

b
∥∇F (w)∥22 +

2β

b
(F∗ − l∗).

The counterpart of Proposition 1 for the finite-sum setting was obtained by Sebbouh et al.
(2021). These are basically extensions of the result of Bassily et al. (2018) to non-interpolation
settings. Indeed, the linear convergence rate obtained by Bassily et al. (2018) can be recovered
in the interpolation setting (i.e., F∗ = l∗ ⇔ C = 0). See Theorem 1.

We next give a convergence analysis of SGD with simple step-size schedules. The proof
technique is based on that of Bottou et al. (2018).
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Theorem 1. Suppose Assumptions 2, 3, and 4 hold. We take step size ηt so that ηt ≤
min{ µ

2AL ,
1

2BL}. Then, the following results hold for constant step-size and decreasing step-
size schedules.
Case of constant step-size: for the constant step-size ηt = η, it follows that

E[F (wT )]− F∗ ≤
ηLC

2µ
+ (1− ηµ)T−1 (F (w1)− F∗) .

Case of decreasing step-size: for the decreasing step-size ηt = 2
µ(γ+t) where γ > 0 is a

hyper-parameter which should be chosen so that ηt satisfies the above conditions, it follows that

E[F (wT )]− F∗ ≤
ν

γ + T
,

where ν is a constant defined below:

ν = max

{
(γ + 1)(F (w1)− F∗),

2LC

µ2

}
.

Proof. By applying Lipschitz smoothness (Assumption 2), ABC condition (Assumption 4), and
PL-inequality (Assumption 3), we get F (wt+1) ≤ F (wt)−η∇F (wt)

⊤G(wt)+
L
2 ∥G(wt)∥22. Hence,

E[F (wt+1)] ≤ E[F (wt)]− ηtE[∥∇F (wt)∥22] +
η2tL

2
E
[
∥Gt(wt)∥22

]
≤ E[F (wt)]− ηt

(
1− ηtBL

2

)
E[∥∇F (wt)∥22] + η2tLA(E[F (wt)]− F∗) +

η2tLC

2

≤ E[F (wt)]−
3ηt
4

E[∥∇F (wt)∥22] + η2tLA(E[F (wt)]− F∗) +
η2tLC

2

≤ E[F (wt)]− ηt

(
3µ

2
− ηtLA

)
(E[F (wt)]− F∗) +

η2tLC

2

≤ E[F (wt)]− ηtµ(E[F (wt)]− F∗) +
η2tLC

2
.

By subtracting F∗ from both sides, we get

E[F (wt+1)]− F∗ ≤ (1− ηtµ)(E[F (wt)]− F∗) +
η2tLC

2
. (4)

Next, we consider two step-size schedules separately.
Case of constant step-size (ηt = η):

Using 4, we get

E[F (wt+1)]− F∗ −
ηLC

2µ
≤ (1− ηµ)

(
E[F (wt)]− F∗ −

ηLC

2µ

)
≤ (1− ηµ)t

(
F (w1)− F∗ −

ηLC

2µ

)
.

This means

E[F (wT )]− F∗ ≤
ηLC

2µ
+ (1− ηµ)T−1 (F (w1)− F∗) .
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Case of decreasing step-size (ηt = 2/µ(γ+t)):
We show the following bound by induction:

E[F (wt)]− F∗ ≤
ν

γ + t
. (5)

This bound clearly holds for t = 1. Next, we suppose it holds for t. We denote t̂ = γ + t for
simplicity. Then, by (4) we see

E[F (wt)]− F∗ ≤
(

1− 2

t̂

)
(E[F (wt)]− F∗) +

2LC

µ2t̂2

≤
(

1− 2

t̂

)
ν

t̂
+

2LC

µ2t̂2

=
t̂− 1

t̂2
ν − ν

t̂2
+

2LC

µ2t̂2

≤ ν

t̂
,

where we used ν ≥ 2LC
µ2 for the last inequality. This proves (5) with t + 1 and concludes the

proof.

Theorem 1 can derive the complexity (number of iterations), under an appropriate choice of
step-size, to achieve an ϵ-accurate solution: E[F (wT )] − F∗ ≤ ϵ. The required complexity for
the constant step-size schedule is

T = O

(
max

{
AL

µ2
,
BL

µ
,
CL

µ2ϵ

}
log

(
1

ϵ

))
, (6)

and for the decreasing step-size schedule

T = O

(
max

{
AL

µ2
,
BL

µ
,
CL

µ2

}
1

ϵ

)
. (7)

We note that the logarithmic factor of (6) can be improved by using a refined step-size sched-
ule. For the detail, see Khaled and Richtárik (2020). Moreover, we note that the complexity of
(6) implies the linear convergence in the interpolation setting (i.e., C = 0).
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